If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2+10x-6=0
We add all the numbers together, and all the variables
x^2+10x-6=0
a = 1; b = 10; c = -6;
Δ = b2-4ac
Δ = 102-4·1·(-6)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{31}}{2*1}=\frac{-10-2\sqrt{31}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{31}}{2*1}=\frac{-10+2\sqrt{31}}{2} $
| 2.1÷(6+x)=0.03 | | 14-11n-17n-8n+-3n=-18 | | x/4.1*9=2.08 | | -5(3-2b)-(-5+b)=-28 | | -2b-3b=-8 | | -2(v-3)=6v-26 | | 4/3x=100 | | -2b—-3b=-8 | | 1x^2+8x-1=0 | | 2/3x+8+⅔x=4 | | p-p+4p-4=20 | | -10n-4n+10=-4 | | |2x-0,3|=0,5 | | 10k-2k-4k-4k+4k=12 | | -12b+14b+b=-12 | | 6j+-7j-5j+7j=-16 | | 6x-4(2x1)=12 | | -6r+5r=8(3r+5)+5(r+4) | | 5m^2-7m=7 | | 2s+-20s-19s=16 | | -5(-3-b)+5(-6b+3)=-20 | | 3(8+8x)=-96 | | -15+13t+-2t=16 | | 8x-3=25+17x | | 2x+6+x=19 | | 19p-15p+-16p-17p=-5 | | 2x(-3)=10x-6-8x | | -12j-15j+13j+-13=15 | | 9a+13a-15a-3a=-8 | | k/1+7=7 | | 4x+8x=3x+17 | | 3m^2-7m=2 |